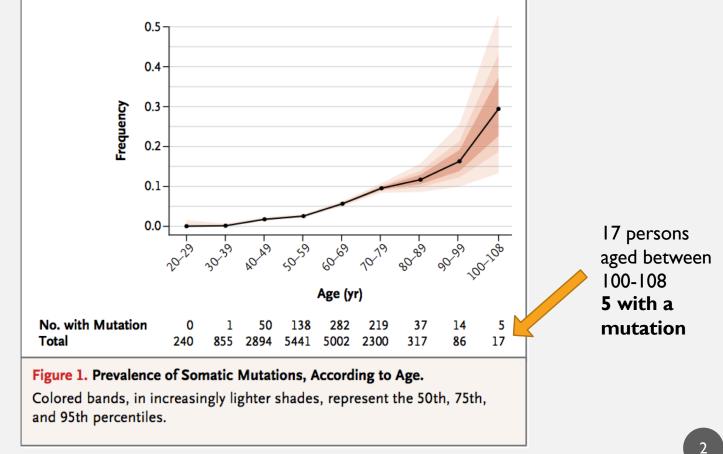
SERVIZIO SANITARIO REGIONALE

Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori

ISTITUT SCIENTIFIC ROMAGNOL PER LO STUDI DEI TUM RI

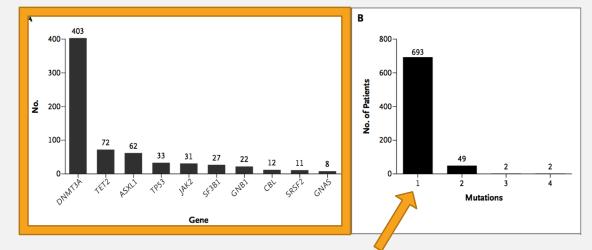
PUBLIC PRIVATE PARTNERSHIP


Istituto di Ricovero e Cura a Carattere Scientifico

EMILIA-ROMAGNA

Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori **IRST-IRCCS**

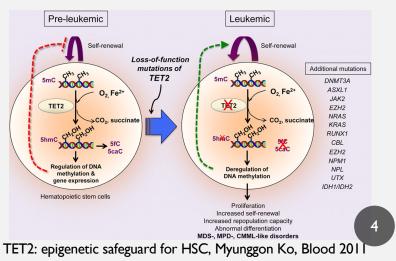
Prof. Giovanni Martinelli


Mutational Frequency and Age

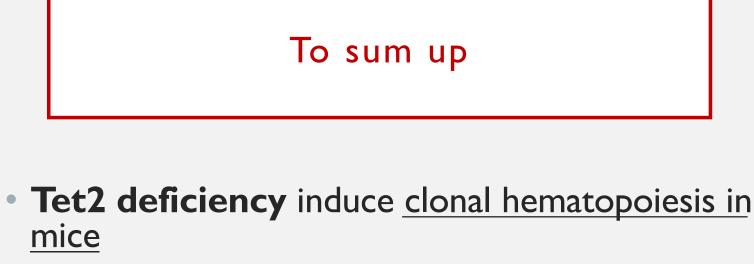
Ι. cardiovascular risk

Somatic Mutations

- Most frequently mutated genes:
 - DNMT3A
 - **TET2**
 - ASXLI
 - TP53
 - JAK2
 - SF3B1



- The majority of pts (693 of 746) have only I mutation
 - consistent with the hypothesis that these persons had clones that harbor only initiating lesions
- I. cardiovascular risk

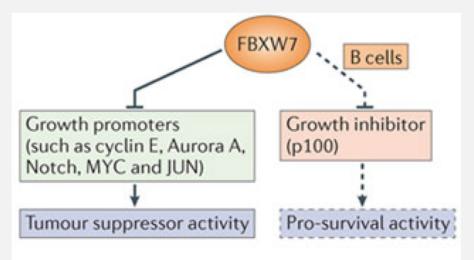

TET2

• **TET2**

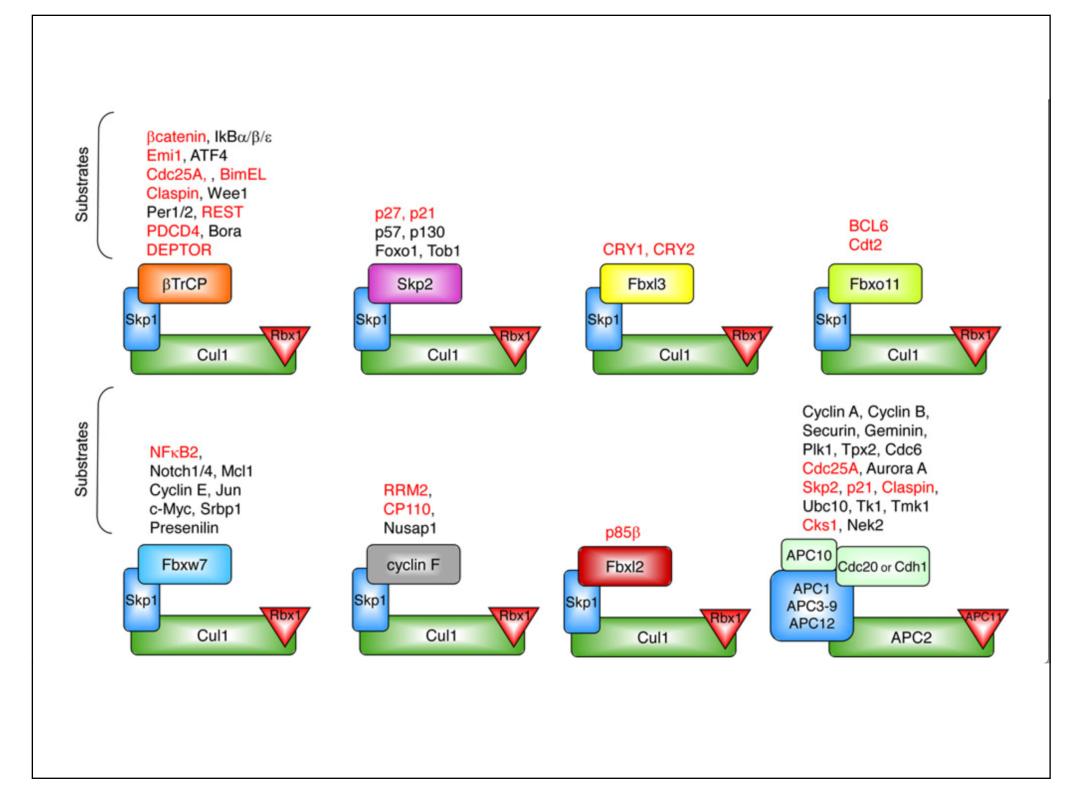
- the first gene reported to exhibit somatic mutations in blood cells in individual with clonal hematopoiesis and w/o hematological malignancies
- is frequently mutated in myeloid malignancies (MDS, AML, CMML)
- Tet2: epigenetic regulatory enzyme
 - Oxidation of 5-methylcytosine (5mC) in DNA in 5-hydroxymethylcytosine (5hmC)
 - Non catalytic f(x)s
- Role in the self renewal of the hematopoietic stem cell
- Role in CVD unexplored

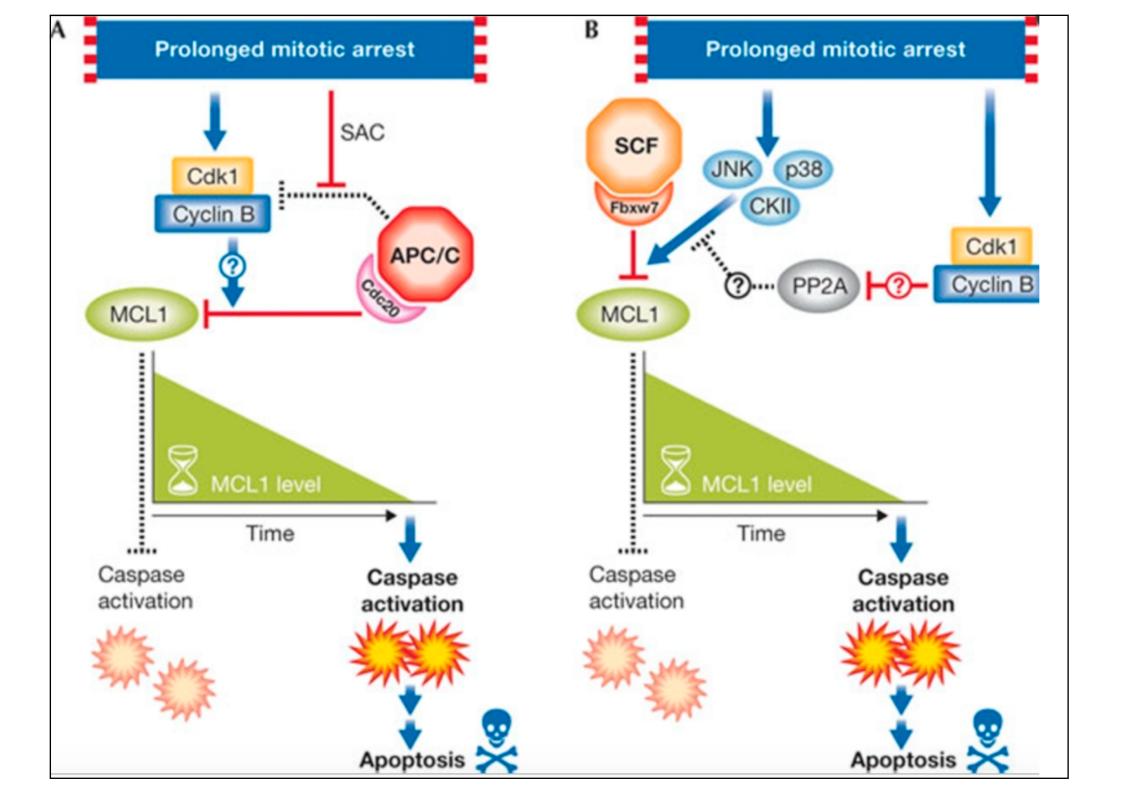
I. cardiovascular risk

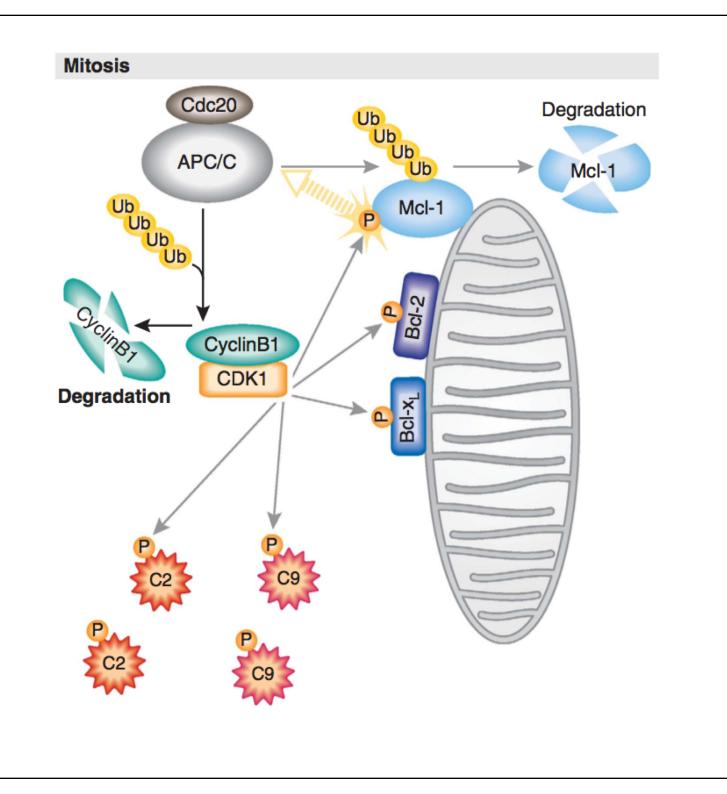
- That is associated with increased atherosclerotic plaque size
- Tet2 deficient macrophages produce more IL-Iβ due to NLRP3 inflammasome pathway
- NLRP3 inflammasome inhibitor reduce the size of the plaque (new therapeutic target?)


FBXW7

 CAVE: Mutation seen also by Jaiswal et al in Age-related Clonal Hematopoiesis Associated with Adverse Outcomes [NEJM 2014] from supplementary


FBXO11	Frameshift/nonsense/splice-site	NM_001190274	0
FBXW7	Frameshift/nonsense/splice-site, E74A, D101V, F280L, R465H, R505C, G597E, R1165Q	NM_033632	1
FLT3	V579A, V592A, V592I, F594L, M737I, FY590-591GD	NM_004119	1
FOXP1	Frameshift/nonsense/splice-site	NM_032682	1
FYN	L174R, R176C, Y531H	NM_002037	0
GATA1	Frameshift/nonsense/splice-site	NM_002049	0
GATA2	Frameshift/nonsense/splice-site, R293Q, N317H, A318T, A318V, A318G, G320D, L321P, L321F, L321V, Q328P, R330Q, R361L, L359V, A372T,		0
	R384G, R384K	NM_001145661	
GATA3	Frameshift/nonsense/splice-site ZNF domain, R276W, R276Q, N286T, L348V,	NM_001002295	0
GNA13	I34T, G57S, S62F, M68K, Q134R, Y145F, L152F, E167D, Q169H, R264H, E273K, V322G, V362G, L371F	NM_006572	0
GNAS	R201(844)S, R201(844)C, R201(844)H, R201(844)L, Q227(870)K, Q227(870)R, Q227(870)L, Q227(870)H, R374(1017)C	NM_016592	8
GNB1	K57N, K57M, K57E, K57T, I80T, I80N	NM_002074	22
HIST1H1B	S89N, S89R, G101D, G73A, K84N, A123D	NM_005322	0
HIST1H1C	P118S, P129A, K156R, K187R, K/G81/83N/A	NM_005319	1


FBXW7


- <u>Ubiquitin ligase</u> of F-box protein family
- In mouse models, FBXW7 functions as a tumour suppressor by ubiquitylating growth-promoting substrates, but this role is cell type specific.
- In B cell lineages, FBXW7 actually has a pro-survival role by mediating the degradation of p100, an inhibitor of nuclear factor-κB (NF-κB) signalling

Mechanisms and function of substrate recruitment by F-box proteins, Jeffrey R. Skaar, *Nature Reviews Molecular Cell Biology 2013*

3. Clonal hematopoiesis: MDS and anemia in the elderly

New challenges in evaluating anemia in older persons in the era of molecular testing [D Steensma, ASH 2016]

Hematology Am Soc Hematol Educ Program. 2016 Dec 2;2016(1):67-73.

New challenges in evaluating anemia in older persons in the era of molecular testing. <u>Steensma DP</u>¹.

Author information

Abstract

Anemia is common in older persons, and often remains unexplained despite a thorough clinical history, physical examination, and focused laboratory testing, including marrow aspiration, biopsy, and karyotyping. The advent of molecular genetic testing panels in hematology clinical practice has complicated the evaluation of older patients with unexplained anemia. While the presence of a somatic mutation provides evidence of clonal hematopoiesis and may support a diagnosis of a hematologic neoplasm such as one of the myelodysplastic syndromes (MDS), with rare exceptions, individual mutations are not strongly associated with one specific diagnosis, nor are they by themselves diagnostic of neoplasia. A clonal mutation in a patient with cytopenias and a nondiagnostic bone marrow may indicate a syndrome with a similar natural history to MDS, but at present there are no clear criteria to distinguish cytopenias coincidentally seen in association with an unrelated clonal mutation from cytopenias that are directly caused by that mutation. Ongoing and planned analyses will help define when mutation patterns alone can identify a disorder equivalent to a morphologically defined myeloid neoplasm such as MDS, further clarifying the etiology and natural history of unexplained anemia in the elderly.

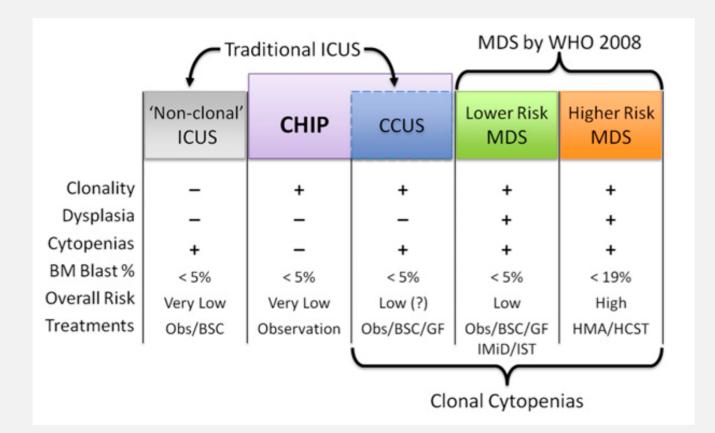
© 2016 by The American Society of Hematology. All rights reserved.

PMID: 27913464 DOI: <u>10.1182/asheducation-2016.1.67</u> [PubMed - in process]

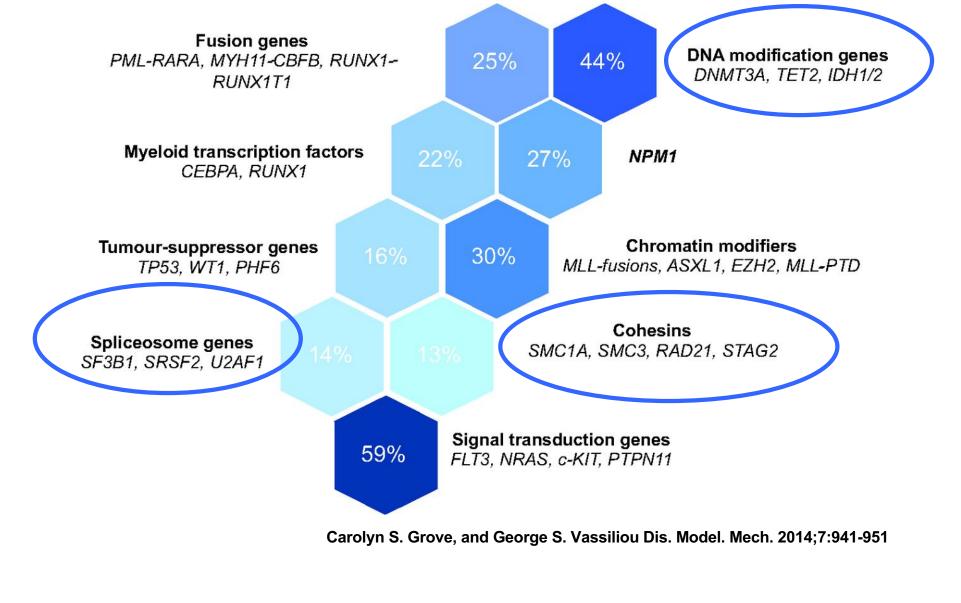
> Presence of somatic mutation provides evidence of clonal hematopoiesis and may support diagnosis of MDS (also when there is a non-diagnostic bone marrow nor classical cytogenetic alterations)

Anemia in older persons

- NHANES III (1988 1994): 11% of men and 10.2 % of women older than 65 years old were anemic
- Leading causes:
 - Nutritional deficiency (Iron, BI2, folate)
 - Inflammation (driven by hepcidin)
 - Erythropoietin (EPO) deficiency caused by chronic kidney disease (when EGFR falls below 40 mL/min)
- Anemia itself is a risk factor associated with many complications including geriatric health problems such as
 - frailty,
 - cognitive dysfunction
 - falls
- 3. MDS and anemia in the elderly


Unexplained Anemia

- Unexplained anemia mechanisms proposed:
 - low testosterone
 - Progressive stem cells dysfunction
 - Acquired resistance to EPO


• NEW ENTITIES:

- ICUS: idiopathic cytopenia of undetermined significance
- CCUS: clonal cytopenia of undetermined significance
- CHIP: clonal hematopoiesis of indeterminate potential

MDS and CHIP: what's the difference

Recurrent mutation groups in secondary (MDS) and de novo AML: distinct functional groups or pathways

Actionable molecular targets in MDS ...

AG120						
ABL1	AG221	TRAS	88م	SF3B1		
ASXL1	CSFOR	IDH1	NOTCH1	SMC1A		
ATRX	CUX1	IDH2	NPM1	SMC3		
BCOR	DNMT3A	IKZF1	NRAS	SRFS2		
BCORL1	ETV TEL	JAK2	PDGFRA	STAG2	Ideaanutlin	
	Azacitidine	JAK3	PHF6	TET2	Idasanutlin Decitabine	
CALR	Decitabine	KDM6A	PTEN	TP53		
CBL	FLT3	ΚΙΤ	PTPN11	U2AF1		
CBLB	GATA1	KRAS	RAD21	WT1		
CBLC	GATA2	MLL	RUNX1	ZRSR2		
CDKN2A	GNAS	MPL	SETBP1			

Healthcare Alliance for Resourceful Medicines Offensive against Neoplasms in HematologY

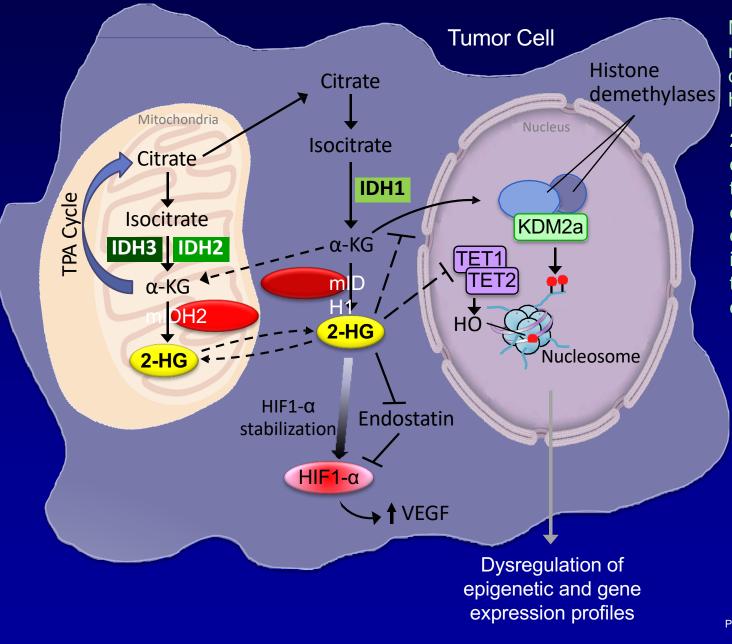
Action Acronym: HARMONY

HARMONY

The HARMONY consortium

HARMONY is a European Network of Excellence that captures, integrates, analyzes and harmonizes big data from high-quality multidisciplinary sources with the purpose of unlocking valuable knowledge on various hematologic malignancies (HMs). Myeloid pannel and MRD assessment SCHOOL OF

Ngs Lab Service at IRCCS

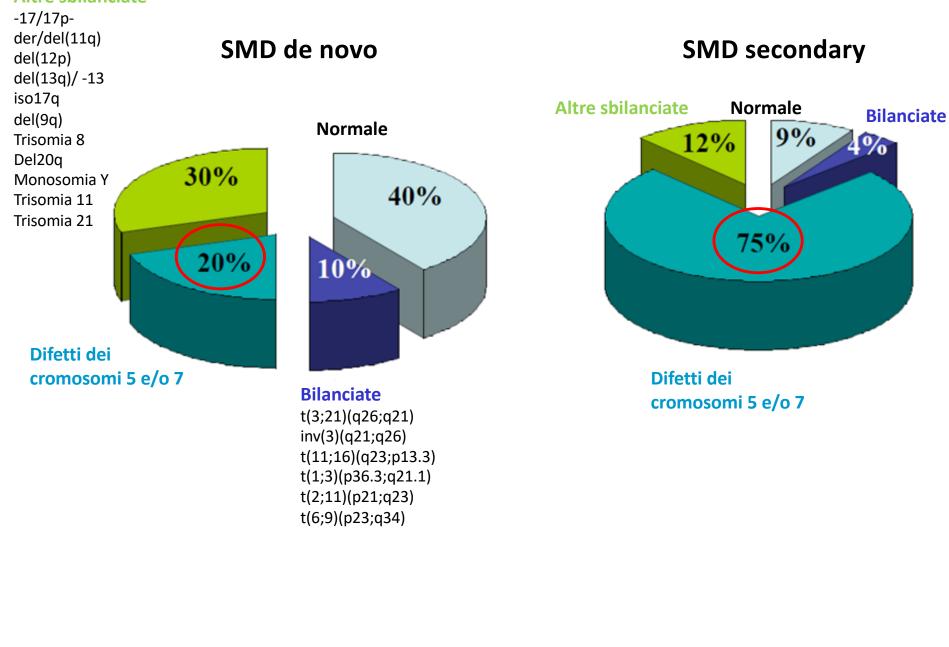


	olaparib ¹	Ness		10
Alterazione genomica	Terapie disponibili (In questo tipo di cancro)		ie disponibili altro tipo di cancro)	Studi clinic
Riepilogo delle varianti			Indicata	Controindica
Studi clinici	4	10 Studi clinic		
Dettagli delle terapie disponibili	2	1 Terapie disp		
Riepilogo della terapia pertinente	1	1 Varianti driv		
Indice		Aspetti prin	icipali del report	
T ipo di cancro del campione: C	ancro ovarico			
irettore: Dott. Fabio Falcini:	Responsabile: Dott. Da	niele Calistri:	Data: 4-set-2018	1 di
SERVIZIO SANITARIO REGIONALE EMILIA-ROMAGNA Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori Istituto di Ricovero e Cura a Carattere Scientifico	PER LO STUDIO E LA CURA DEI TUMORI			
	ISTITUTO SCIENTIFICO			
S Diagnostica Molecolare Avanzata e Predit	tiva	Via Piero Maroncelli, 40 - 47014 Meldola (FC), Ita		
perimentale		IRST - Istituto Scientifico Romagnolo per lo Studio e la Cur dei Tumori (IRST) S.r.l. IRCC		

iepilogo delle varianti			Indicata	Controindicata
Alterazione genomica	Terapie disponibili (In questo tipo di cancro)	Terapie disponibil (In un altro tipo di		Studi clinici
BRCA2 mutation	olaparib ¹	Nessuna	essuna	
nti incluse nelle terapie disponibili: EMA1, ESMO				
iepilogo della terapia perti	inente			
In questo tipo di O In un altro tipo di cancro		oindicato A Sia per controir		Nessuna evidenza
RCA2 mutation				
Terapia pertinente		EMA	ESMO	Studi clinici*
olaparib				• (IV)
olaparib niraparib		×	×	● (IV) ● (III)
olaparib niraparib rucaparib		× ×	× ×	(IV) (III) (III)
olaparib niraparib rucaparib cediranib + olaparib, olaparib			× × ×	(IV) (III) (III) (III) (III)
olaparib niraparib rucaparib cediranib + olaparib, olaparib olaparib + chemotherapy			× × × ×	 (IV) (III) (III) (III) (II) (I/II)
olaparib niraparib rucaparib cediranib + olaparib, olaparib			× × ×	(IV) (III) (III) (III) (III)

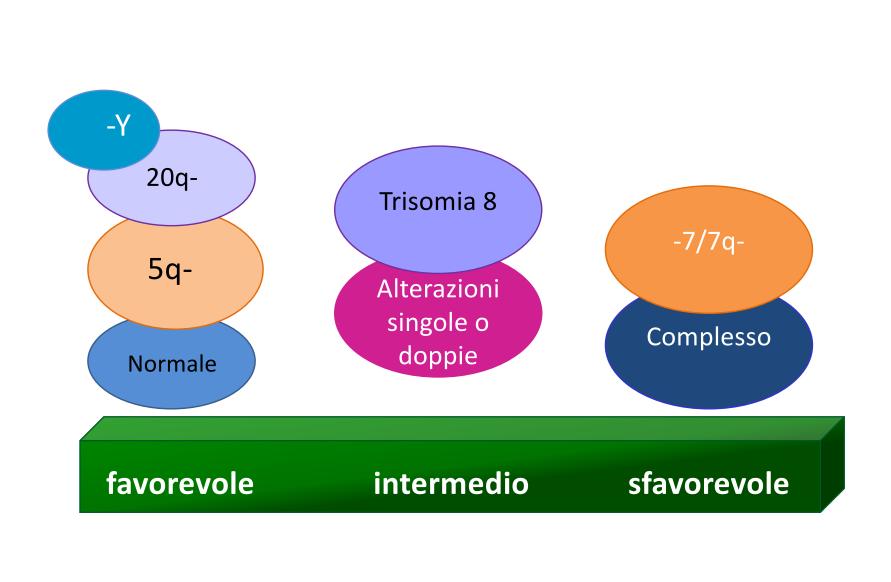
* Viene mostrata la fase più avanzata (IV, III, II/III, II, I/II, I) e possono essere disponibili più studi clinici.

IDH mutations in MDS and Leukemia and Cancer⁴


Mutant IDH1 and IDH2 results in an increase of the oncometabolite, 2hydroxyglutamate (2-HG)

2-HG induces a block of cell differentiation by inhibiting the chromatin-modifying enzymes, DNA and histone demethylases, which results in hypermethylated DNA, thereby blocking cell differentiation

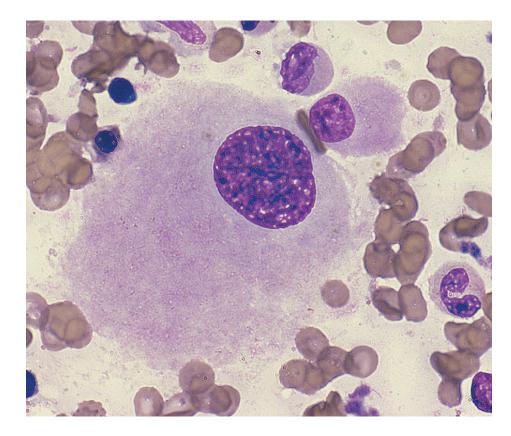
TET2 is an α-KG-dependent dioxygenase that is inhibited by 2-HG TET2 is thought to be involved in both passive and active DNA demethylation


Alterazioni citogenetiche e SMD

Altre sbilanciate

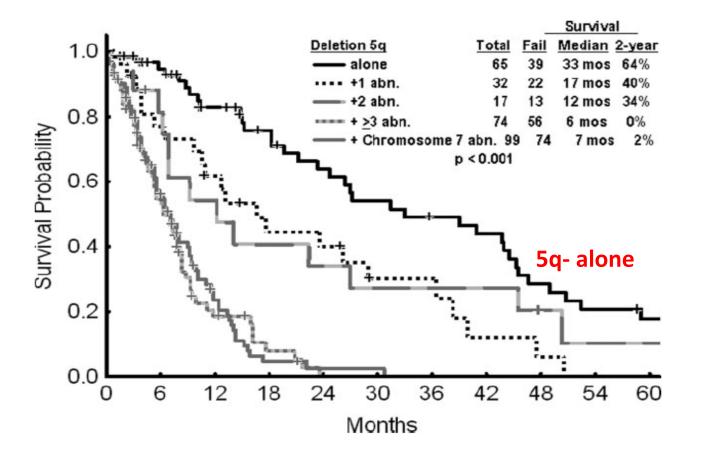
Le Beau 2005

Alterazioni cromosomiche e rischio

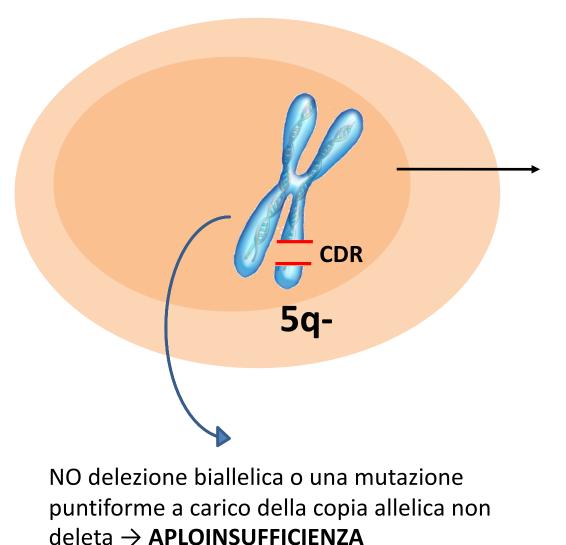

WHO classification of Myelodysplastic Syndromes

Disease	Blood findings	Bone marrow findings
Refractory cytopenia with unilineage dysplasia (RCUD):	Unicytopenia or bicytopenia [*] No or rare blasts (<1%)	Unilineage dysplasia: 10% of the cells in one myeloid lineage, <5% blasts, <15% of erythroid precursors are ring sideroblasts
Refractory anemia with ringed sideroblasts (RARS)	Anemia, no blasts.	Erythroid dysplasia only, < 5% blasts, ≥15% ringed sideroblasts.
Refractory cytopenia with multilineage dysplasia (RCMD)	Cytopenia(s), no or rare blasts (<1%), no Auer roads, <1x10 ⁹ /L monocytes.	Dysplasia in 10% of the cells in 2 myeloid lineages (neutrophil and/or erythroid precursors and/or megakaryocytes), <5% blasts in marrow No Auer rods, \pm 15% ring sideroblasts
Refractory anemia with excess blasts-1 (RAEB-1)	Cytopenia(s), <5% blasts, no Auer roads, <1x 10º/L monocytes.	Unilineage or multilineage dysplasia, 5-9% blasts, no Auer roads.
Refractory anemia with excess blasts-2 (RAEB-2)	Cytopenia(s), 5-19% blasts, Auer roads ±, <1x10º/L monocytes.	Unilineage or multilineage dysplasia, 10-19% blasts, Auer roads \pm .
Myelodysplastic syndrome, unclassified (MDS-U)	Cytopenias, <1% blasts, no Auer roads.	Unequivocal dysplasia in <10% of cells in one or more myeloid lineages when accompanied by a cytogenetic abnormality considered as presumptive evidence for a diagnosis of MDS, <5% blasts
MDS associated with isolated del(5q)	Anemia, normal or increased platelet count, no or rare blasts (<1%)	Normal to increased megakaryocytes with hypolobated nuclei, <5% blasts, no Auer roads, isolated del(5q)
		Blood 2008;114:937-51

Distinct haematological disorder with deletion of long arm of No. 5 chromosome

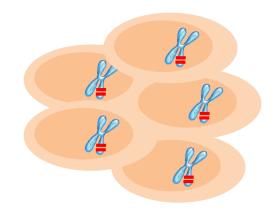

van Den Berghe, Nature, 251, 437-438 (1974)

- Female preponderance
- 5q- sole karyotypic abnormality
- Macrocytic anemia (MCV>100 fL)
- High platelet count
- Increased megakaryocytes with monolobulated nuclei
- Prolonged survival


Delezione 5q e prognosi

La **prognosi** delle delezioni 5q è generalmente **favorevole** a meno che tali delezioni non si verifichino contemporaneamente ad addizionali alterazioni citogenetiche

Aploinsufficienza


Genotipo-Fenotipo

APLOINSUFFICIENZA

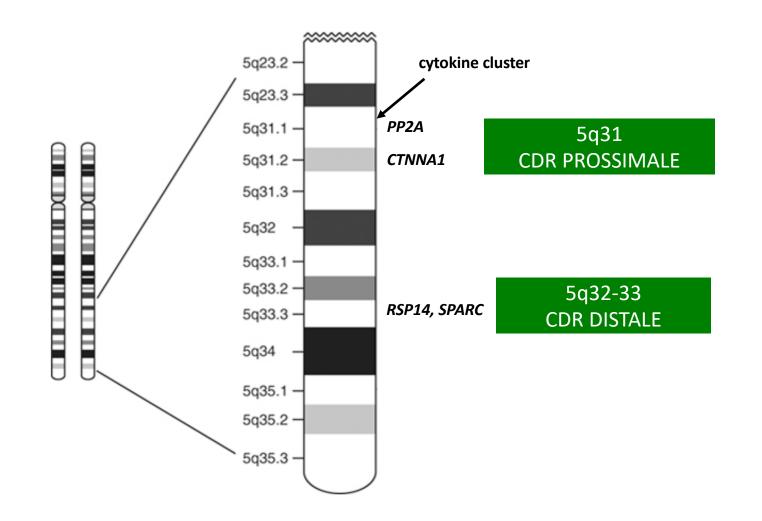
per uno o più geni localizzati nella CDR → Riduzione del 50% della dose genica

> espansione midollare di un progenitore emopoietico con del(5q)

Identification of RPS14 as a 5q- syndrome gene by RNA interference screen

CDR of 5q- syndrome 5q23.2 cvtokine cluster 5q23.3 (IL3, IL4, IL5, IL13, GM-CSF) 5q31.1 PP2A MDS/AML 5q31.2 · (CTNNA1, EGR1, CDC25C) 5q31.3 5q32 5q- syndrome 5q33.1 · (RPS14, SPARC) 5q33.2 · 5q33.3 5q34 – ← NPM1 5q35.1 -

5q35.2 ·

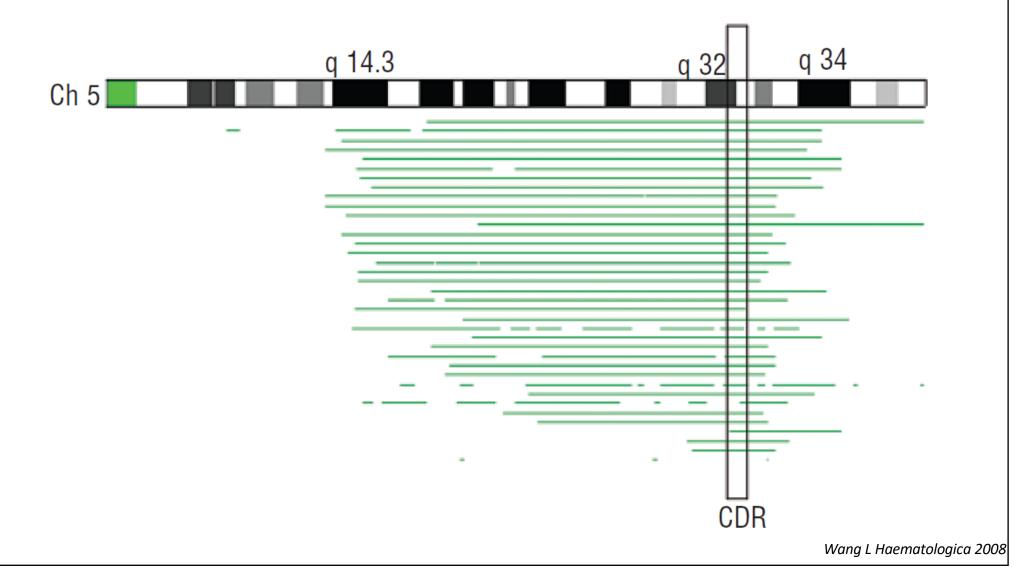

5q35.3 ·

Normal progenitor cells е 10 8.62% 0.36% 3.2% 0.2% 10³ 10³ CD41 CD41 CD41 02 10¹ 10¹ 39.5% 67.4% 10⁰ 10^{3} 104 10¹ 10² 10³ 104 10⁰ 101 10² 100 GlyA GlyA 104 54.6% 42.3% 0.61% 1.36% 10^{3} 10³ 4110² CD11b 7.71% 24.1% 10² 10³ 100 10¹ 10² 10³ 100 10¹ 104 104 GlyA GlyA

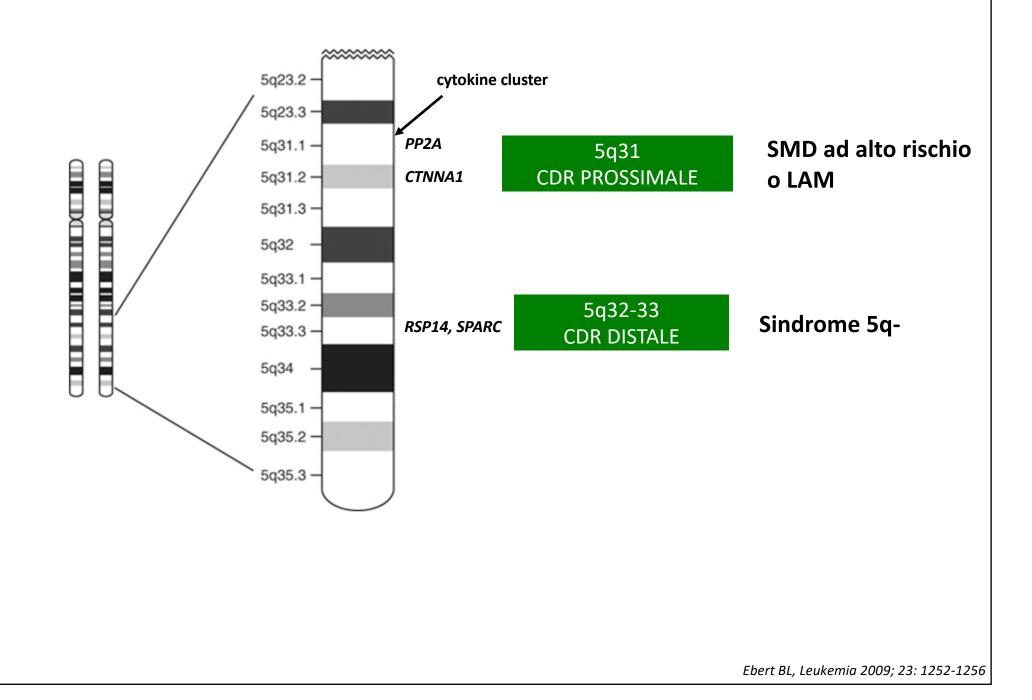
Blood. 2002;99:4638-4641

Nature. 2008;451(7176):335-339

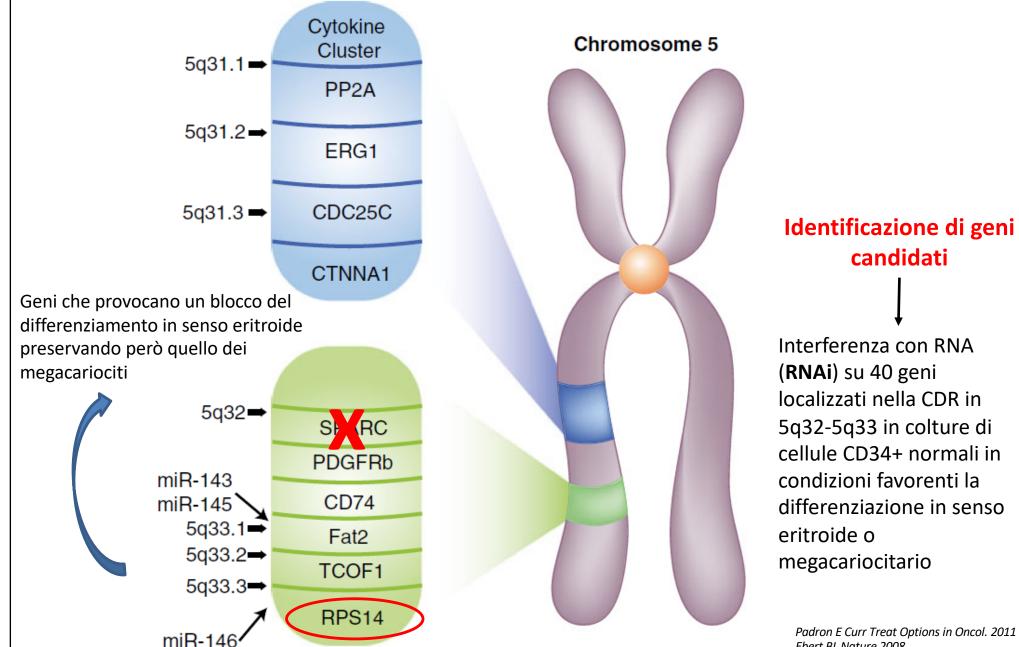
Definizione della CDR



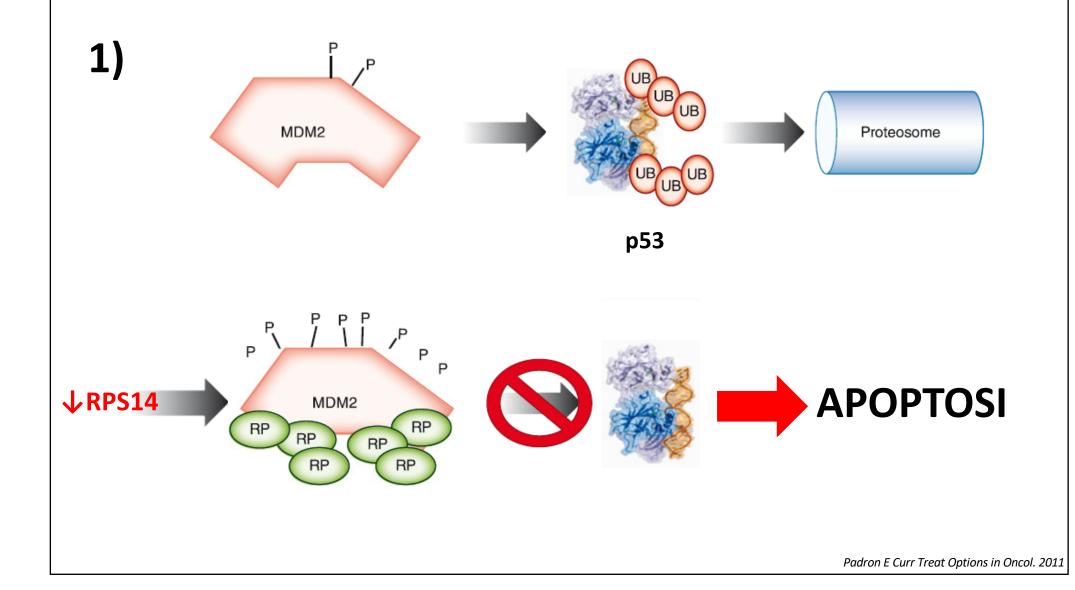
CDR: Common Deleted Region

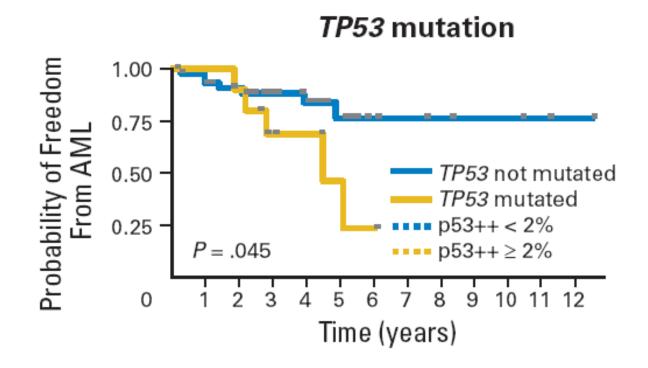

Ebert BL, Leukemia 2009; 23: 1252-1256

Definizione della CDR mediante SNP array


La tecnologia degli array basati sui polimorfismi del singolo nucleotide (**SNP array**) fornisce un nuovo potente strumento per caratterizzare le alterazioni genomiche e definire le minime regioni comuni di delezione.

Definizione della CDR

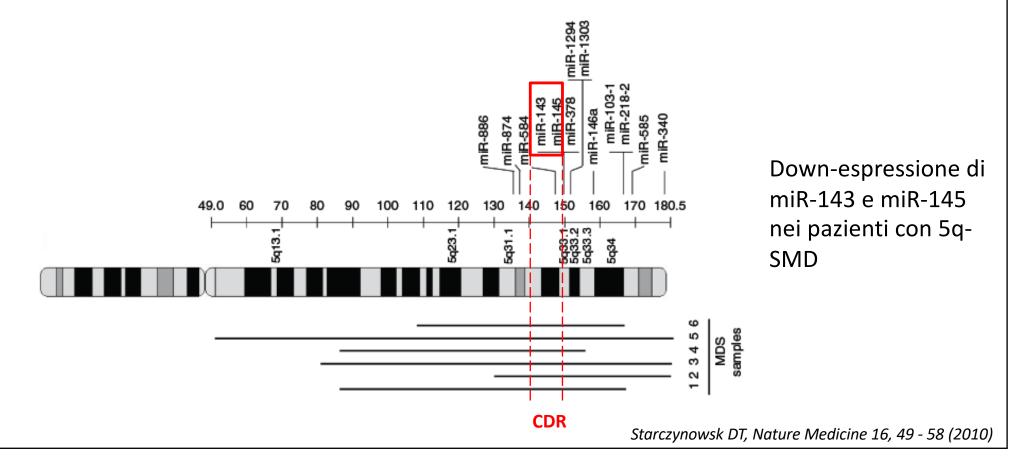

Identificazione di geni candidati


Ebert BL Nature 2008

Aploinsufficienza ribosomiale

Il **difetto funzionale** delle proteine ribosomali nelle cellule staminali emopoietiche causa: 1) apoptosi, 2) una riduzione della sintesi di emoglobina e 3) alterazione della trascrizione

TP53 Mutations in Low-Risk Myelodysplastic Syndromes With del(5q) Predict Disease Progression



JCO 2011;29:1971-9

medicine

Identification of miR-145 and miR-146a as mediators of the 5q– syndrome phenotype

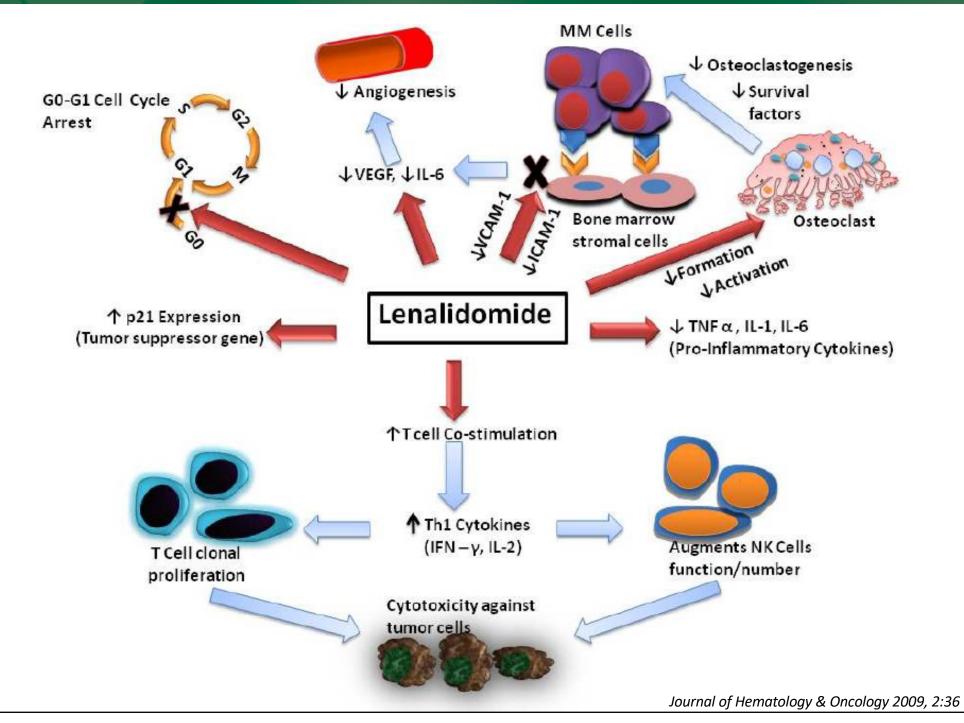
Daniel T Starczynowski^{1,2}, Florian Kuchenbauer¹, Bob Argiropoulos¹, Sandy Sung¹, Ryan Morin¹, Andrew Muranyi¹, Martin Hirst¹, Donna Hogge¹, Marco Marra¹, Richard A Wells³, Rena Buckstein³, Wan Lam^{1,2}, R Keith Humphries^{1,4} & Aly Karsan^{1,2}

Lenalidomide in 5q- SMD

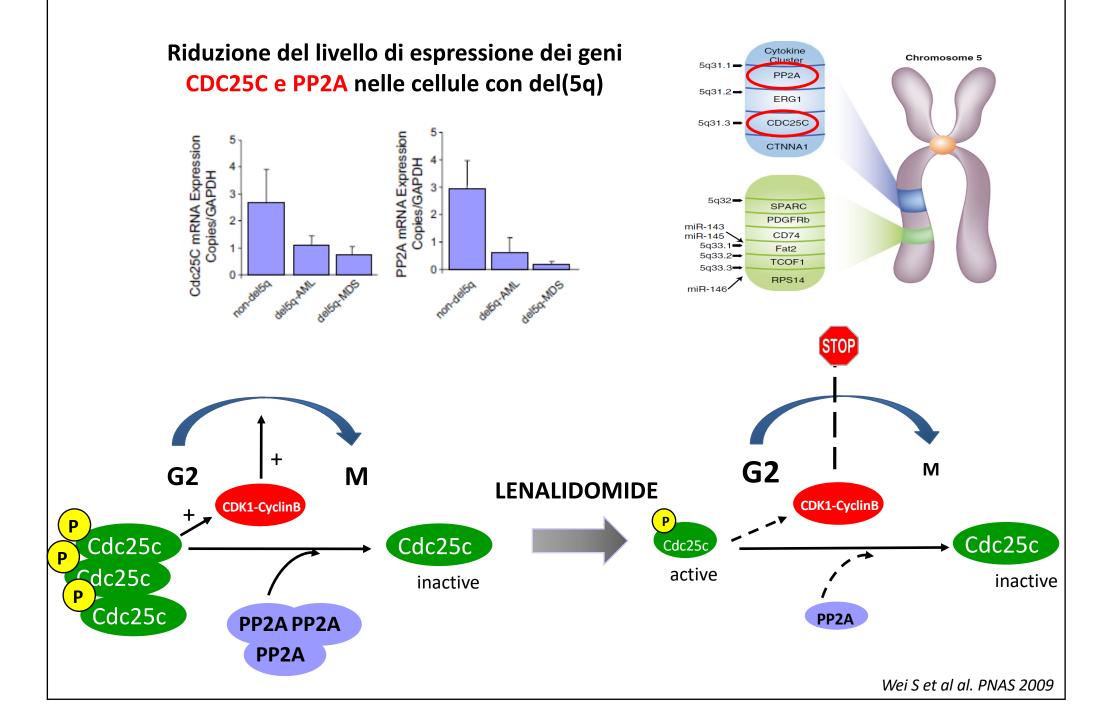
The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Lenalidomide in the Myelodysplastic Syndrome with Chromosome 5q Deletion


Alan List, M.D., Gordon Dewald, Ph.D., John Bennett, M.D., Aristotle Giagounidis, M.D., Azra Raza, M.D., Eric Feldman, M.D., Bayard Powell, M.D., Peter Greenberg, M.D., Deborah Thomas, M.D., Richard Stone, M.D., Craig Reeder, M.D., Kenton Wride, M.S., John Patin, M.S., Michele Schmidt, R.N., Jerome Zeldis, M.D., and Robert Knight, M.D., for the Myelodysplastic Syndrome-003 Study Investigators*

La lenalidomide è in grado di indurre la remissione citogenetica (50%) e di eliminare la dipendenza dalle trasfusioni (83%) nei pazienti con SMD e del(5q)

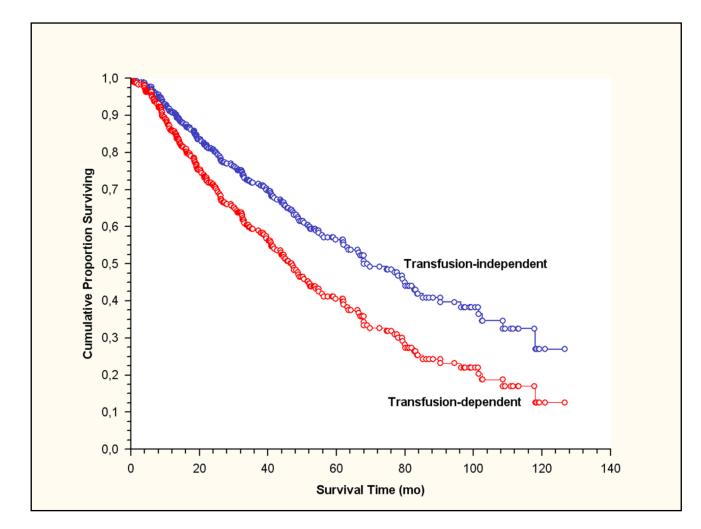

Complexity	Patients Who Could Be Evaluated*	Cytogenetic Response	Complete Cytogenetic Remission
Isolated 5q deletion — no. (%)	64	49 (77)	29 (45)
5q deletion + 1 additional abnormality — no. (%)	15	10 (67)	6 (40)
Complex (≥3 abnormalities) — no. (%)	6	3 (50)	3 (50)
P value		0.27	0.93

New Engl J Med 2006; 355:1456-1465

Meccanismo di azione della Lenalidomide in 5q- SMD

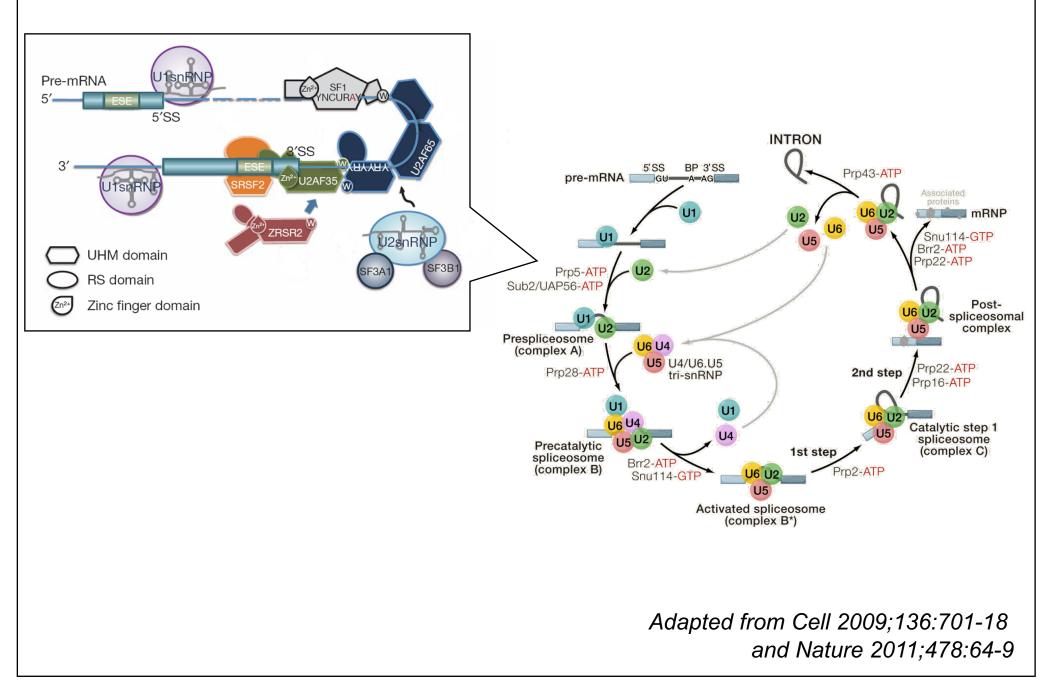
Meccanismo di azione della Lenalidomide in 5q- SMD

2012 Molecular classification of MDS


Disease	Molecular findings	Bone marrow findings
Refractory cytopenia with unilineage dysplasia (RCUD)		Erythroid dysplasia only, < 5% blasts, <15% ringed sideroblasts.
Refractory anemia with ringed sideroblasts (RARS)		Erythroid dysplasia only, < 5% blasts, ≥15% ringed sideroblasts.
MDS with isolated del(5q)	RPS14, miR145, miR146 TP53 (leukemic evolution)	Normal to increased megakaryocytes with hypolobated nuclei, <5% blasts, no Auer roads, isolated del(5q)
Refractory cytopenia with multilineage dysplasia (RCMD-RS)		Dysplasia in ≥ 10% of cells in 2 or more myeloid cell lines, < 5% blasts, no Auer roads, <15% ringed sideroblasts.
Refractory anemia with excess blasts-1 (RAEB-1)		Unilineage or multilineage dysplasia, 5% to 9% blasts, no Auer roads.
Refractory anemia with excess blasts-2 (RAEB-2)		Unilineage or multilineage dysplasia, 10% to 19% blasts, occasional Auer roads.
MDS with Marrow Fibrosis		Increased marrow cellularity, multilineage dysplasia, bone marrow fibrosis, presence of clusters of CD34+ cells.

WHO classification of Myelodysplastic Syndromes

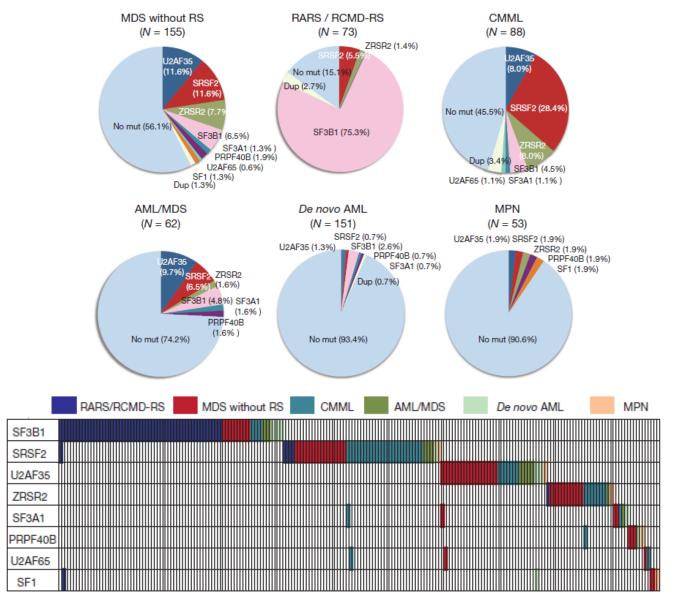
Disease	Blood findings	Bone marrow findings
Refractory cytopenia with unilineage dysplasia (RCUD):	Unicytopenia or bicytopenia [*] No or rare blasts (<1%)	
Refractory anemia with ringed sideroblasts (RARS)	Anemia, no blasts.	
Refractory cytopenia with multilineage dysplasia (RCMD)	Cytopenia(s), no or rare blasts (<1%), no Auer roads, <1x10 ⁹ /L monocytes.	
Refractory anemia with excess blasts-1 (RAEB-1)	Cytopenia(s), <5% blasts, no Auer roads, <1x 10 ⁹ /L monocytes.	
Refractory anemia with excess blasts-2 (RAEB-2)	Cytopenia(s), 5-19% blasts, Auer roads ±, <1x10 ⁹ /L monocytes.	
Myelodysplastic syndrome, unclassified (MDS-U)	Cytopenias, <1% blasts, no Auer roads.	Unequivocal dysplasia in <10% of cells in one or more myeloid lineages when accompanied by a cytogenetic abnormality considered as presumptive evidence for a diagnosis of MDS, <5% blasts
MDS associated with isolated del(5q)	Anemia, normal or increased platelet count, no or rare blasts (<1%)	Normal to increased megakaryocytes with hypolobated nuclei, <5% blasts, no Auer roads, isolated del(5q)
		Pland 2008:111.027 51


Blood 2008;114:937-51

Survival of MDS patients according to transfusion-dependency

N Engl J Med 2005;352:536-8

RNA splicing machinery

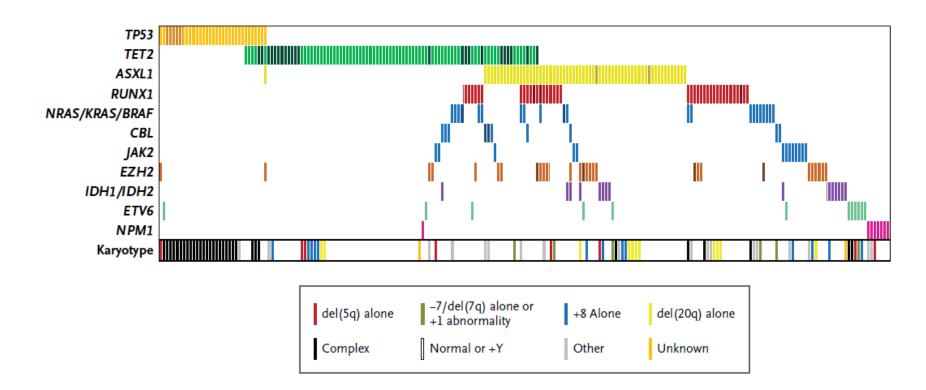


Somatic SF3B1 Mutation in Myelodysplasia with Ring Sideroblasts

Tumor Type	Mutations		
	no. of patients/total no.	% (95% CI)	
Myelodysplastic syndromes	72/354	20 (16–25)	
Refractory anemia	9/91	10 (5-18)	
Refractory anemia with ring sideroblasts	40/59	68 (54–79)	
Refractory cytopenia with multilineage dysplasia	3/53	6 (1–16)	65%
Refractory cytopenia with multilineage dysplasia and ring sideroblasts	13/23	57 (35–77)	
Refractory anemia with excess blasts	6/110	6 (2–12)	
Other subtypes	1/18	6 (0–27)	

N Engl J Med 2011; 365:1384-1395

Frequent pathway mutations of splicing machinery in myelodysplasia

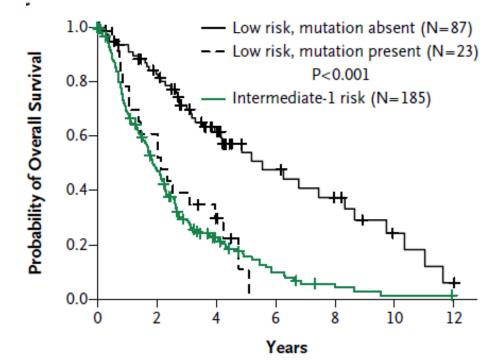


Nature. 2011 Sep 11;478(7367):64-9

2012 Molecular classification of MDS

Disease	Molecular findings	Bone marrow findings
Refractory cytopenia with unilineage dysplasia (RCUD)	U2AF35	Erythroid dysplasia only, < 5% blasts, <15% ringed sideroblasts.
Refractory anemia with ringed sideroblasts (RARS)	SF3B1	Erythroid dysplasia only, < 5% blasts, ≥15% ringed sideroblasts.
MDS with isolated del(5q)	RPS14, miR145, miR146 TP53 (leukemic evolution)	Normal to increased megakaryocytes with hypolobated nuclei, <5% blasts, no Auer roads, isolated del(5q)
Refractory cytopenia with multilineage dysplasia (RCMD)	SRSF2, U2AF35	Dysplasia in ≥ 10% of cells in 2 or more myeloid cell lines, < 5% blasts, no Auer roads, <15% ringed sideroblasts.
Refractory anemia with excess blasts-1 (RAEB-1)		Unilineage or multilineage dysplasia, 5% to 9% blasts, no Auer roads.
Refractory anemia with excess blasts-2 (RAEB-2)		Unilineage or multilineage dysplasia, 10% to 19% blasts, occasional Auer roads.
MDS with Marrow Fibrosis		Increased marrow cellularity, multilineage dysplasia, bone marrow fibrosis, presence of clusters of CD34+ cells.

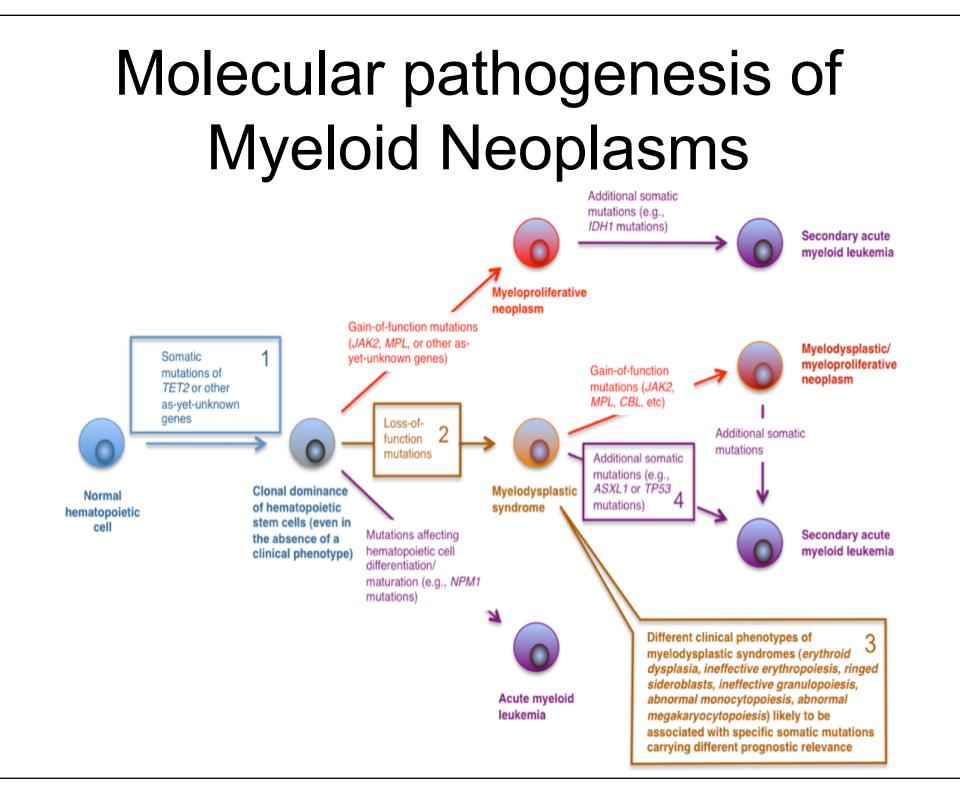
Clinical Effect of Point Mutations in Myelodysplastic Syndromes



- By OncoMap screening, somatic mutations were identified in 18 genes.
- 50.9% of samples were found to carry at least one mutation
- Most frequently mutated genes were *TET2* (18%), *ASXL1* (14%), *RUNX1* (8%), and *TP53* (7%).

N Engl J Med 2011;364:2496-506

Clinical Effect of Point Mutations in Myelodysplastic Syndromes


Table 2. Hazard Ratios for Death in a Multivariable Model.*			
Risk Factor	Hazard Ratio (95% CI)	P Value	
Age ≥55 yr vs. <55 yr	1.81 (1.20–2.73)	0.004	
IPSS risk group			
Intermediate-1 vs. low	2.29 (1.69–3.11)	< 0.001	
Intermediate-2 vs. low	3.45 (2.42-4.91)	< 0.001	
High vs. low	5.85 (3.63–9.40)	< 0.001	
Mutational status			
TP53 mutation present vs. absent	2.48 (1.60–3.84)	< 0.001	
EZH2 mutation present vs. absent	2.13 (1.36–3.33)	< 0.001	
ETV6 mutation present vs. absent	2.04 (1.08-3.86)	0.03	
RUNX1 mutation present vs. absent	1.47 (1.01–2.15)	0.047	
ASXL1 mutation present vs. absent	1.38 (1.00–1.89)	0.049	

N Engl J Med 2011;364:2496-506

Molecular classification of MDS

Disease	Molecular findings	Bone marrow findings
Refractory cytopenia with unilineage dysplasia (RCUD)	SRSF2, U2AF35	Erythroid dysplasia only, < 5% blasts, <15% ringed sideroblasts.
Refractory anemia with ringed sideroblasts (RARS)	SF3B1	Erythroid dysplasia only, < 5% blasts, ≥15% ringed sideroblasts.
MDS with isolated del(5q)	RPS14, miR145, miR146 TP53 (leukemic evolution)	Normal to increased megakaryocytes with hypolobated nuclei, <5% blasts, no Auer roads, isolated del(5q)
Refractory cytopenia with multilineage dysplasia (RCMD-RS)	SF3B1	Dysplasia in ≥ 10% of cells in 2 or more myeloid cell lines, < 5% blasts, no Auer roads, <15% ringed sideroblasts.
Refractory anemia with excess blasts-1 (RAEB-1)	TP53 ASXL1 RUNX1	Unilineage or multilineage dysplasia, 5% to 9% blasts, no Auer roads.
Refractory anemia with excess blasts-2 (RAEB-2)	EZH2 ETV6	Unilineage or multilineage dysplasia, 10% to 19% blasts, occasional Auer roads.

Acknowledgments

Ravenna